IFRF MEMBERS CONFERENCE

June 8-10, 2009 Boston, MA

Presented by Great Southern Flameless, LLC "GSF"

One of the **Great Southern Group of Companies**

Great Southern Technologies, LLC

Great Southern Flameless, LLC

Great Southern Independent, LLC

William Gibson, President Combustion Patents

Co-inventor and assignor of record

Nitrogen Oxide Control Using Internally Recirculated Flue Gas

U.S. Patent: 5,135,387

Original Filing: October, 1989

Multiple Purpose Burner Process and Apparatus

U.S. Patent: 5,284,438

Original Filing: January, 1992

Method to Facilitate Flameless Combustion Absent Catalyst or High Temperature Oxidant

U.S. Patent: 6,796,789

Original Filing: January, 2003

Upcoming Air Quality Regulations for CO₂ Greenhouse Gas

- **№** 16% Reduction in CO₂ Emissions by 2020
- 80% Reduction by 2050

- Cap-and-Trade Type Regulation (\$\$\$)
- YES We Still Must Meet Consent Decree Compliance for NO_x

Multiple Technologies for CO₂ Reduction

- Pre-Combustion Fuel Conditioning
- High Efficiency Combustion Technologies
 üOxy-Fuel Systems
 üHigh Temperature Air Combustion (HTAC)
 - **ü**Flameless Combustion
- Post-Combustion CO₂ Capture and Storage

BACT???

Cap and Trade

- Will Cost You Dearly
- Will Be Set Just Below the Costs For Pre and Post Combustion Systems
- You Lose Control
- Zero Return on Investment

Pre and Post Combustion Systems

- Will Cost You Dearly
- Increased Operating and Maintenance Costs
- You Keep Control
- Zero Return on Investment

INTRODUCING

Conventional Heaters with Flameless Combustion Capability

(patents pending)

the next generation of direct fired heaters

GSF Flameless Combustion

- Same Installed Cost For Retrofit or New Double Fired Heater with Balanced Draft Air Preheat System
- You Keep Control
- Significant Return on Investment with Energy Savings and Increased Run Lengths

Evolutionary Impacts

1950's

1980's

			Sombastion
Radiation	Uneven	Uneven	EVEN
Fuel efficiency with low NOx	Low	Low	HIGH
Fuel filters	No	Yes	NO
Long run lengths	No	No	YES
Low fouling rates	No	No	YES
Flame/hot gas impingement	Yes	Yes	NO
Safe operation	Good	Good	EXCELLENT
Repeatability of performance	Marginal	Good	EXCELLENT

Flameless

Conventional vs. Flameless Combustion

Conventional Combustion

Inert
O_2
H_2
С

- Close Spacing
- Low Velocity
- Low Inert Level
- (3) T's of Combustion:
 - Time
 - Temperature
 - Turbulence

Conventional vs. Flameless Combustion

Flameless Combustion

Inert
O_2
H_2
С

- Open Spacing
- High Velocity
- High Inert Level
- •(2) T's and (1) D
 - Time
 - Temperature
 - Diffusion

Conventional vs. Flameless Combustion

Results

	Conventional	Flameless
Energy release/unit volume	High	Low
Localized temperature	High	Low
NOx	High	Low
Combustion	Complete	Complete

Great Southern Flameless, LLC

Typical GSF Cabin Heater with Air Pre-heat System

General Arrangement

Great Southern Flameless, LLC

Typical GSF Cabin Heater Coil Layout

Elevation End View

Great Southern Flameless, LLC

Typical GSF Cabin Heater Coil Layout

Elevation Side View

Plan View of Coil Layout

Air and Fuel Nozzle System

Conventional to Flameless Control GSF's Fuel Delivery System (patent pending)

Sustaining Flameless Combustion (patent pending)

HTAC Together With GSF's Proprietary Refractory Wall Texture

Localized Temperatures Are Maintained Above Auto-Ignition Temperature of the Fuel, Air and Flue Gas Mixture

Flameless Application Issues

Create flameless combustion in a relatively low temperature/low flux application

Safely & reliably go from conventional to flameless

- AND -

Safely & reliably go from flameless to conventional

GSF's Conventional Heater with Flameless Capability Key Benefits

- Wide Range of Operation
- SCR Level NO_x Emissons (3-8 ppm)
- HTAC Recuperative Air Pre-Heater (industry standard)
- Up to 11% Improved Efficiency
- ♠ Up to 11% CO₂ Reduction
- Even Radiant Heat Flux
- Longer Run Lengths with Increased Throughput

HEATER TECHNOLOGY COMPARISON

Radiant Coil Configuration: Double Fired

Absorbed Duty: 100 MMBtu/hr Excess Air: 15% Fuel Composition: 30% H2, 50% CH4, 20% C3H8

	FLAMELESS MAXIMUM EFFICIENCY	FLAMELESS BASELINE	CONVENTIONAL NATURAL DRAFT
Air Preheat	Yes	Yes	No
Combustion Air Temp, °F	890	890	60
Stack Temp, °F	240	300	650
Bridgewall Temp, °F	1537	1537	1537
Heat Release (LHV), MMBtu/hr	107.5	109.9	121.2
Heater Efficiency (LHV), %	93	91	82.5
Heater Efficiency (HHV), %	83	81	72.5
Energy Savings (LHV), MMBtu/hr	13.7	11.3	NA
CO, ppmvd	<50	<50	<50
NOx, ppmvd corrected to 3% O2	3-8	3-8	20
NOx, lb/MMBtu (HHV)	.006	.006	.024
NOx, lb/hr	0.723	0.741	3.31
NOx reduction, lb/hr	2.587	2.569	NA
NOx reduction, %	78.2	77.6	NA
CO2, lb/hr	13867.5	14177.1	15634.8
CO2 reduction, lb/hr	1767.3	1457.7	NA
CO2 reduction, %	11.3	9.3	NA

More Key Benefits

- Flexibility Compatible With Natural Gas, Refinery Fuel Gas, 100% H₂ and 100% Oxyen
- Large Fuel Injection Ports for Lower Maintenance Cost
- Eliminates Need for Fuel Filter/Coalescer
- Reduces Cost of NO_x and Future CO₂
 Credits

HEATER TECHNOLOGY COMPARISON

Radiant Coil Configuration: Double Fired

Absorbed Duty: 100 MMBtu/hr Excess Air: 15%

Conventional Fuel Composition: 30% H2, 50% CH4, 20% C3H8

Flameless Fuel Composition: 60% H2, 20% CH4, 20% C3H8

	FLAMELESS MAXIMUM EFFICIENCY	FLAMELESS BASELINE	CONVENTIONAL NATURAL DRAFT
Air Preheat	Yes	Yes	No
Combustion Air Temp, °F	890	890	60
Stack Temp, °F	240	300	650
Bridgewall Temp, °F	1537	1537	1537
Heat Release (LHV), MMBtu/hr	107.5	109.9	121.2
Heater Efficiency (LHV), %	93	91	82.5
Heater Efficiency (HHV), %	83	81	72.5
Energy Savings (LHV), MMBtu/hr	13.7	11.3	NA
CO, ppmvd	<50	<50	<50
NOx, ppmvd corrected to 3% O2	3-8	3-8	20
NOx, lb/MMBtu (HHV)	.006	.006	.024
NOx, lb/hr	0.723	0.741	3.31
NOx reduction, lb/hr	2.587	2.569	NA
NOx reduction, %	78.2	77.6	NA
CO2, lb/hr	12497.9	12776.9	15634.8
CO2 reduction, lb/hr	3136.9	2857.9	NA
CO2 reduction, %	20.1	18.3	NA

And Still More...

- The Capital Cost of a GSF Heater is Comparable to a Typical Conventional, Double Fired Heater with Balanced Draft, Air Pre-Heat System
- GSF Technology is for New Heaters or Retrofits

Economic Comparison

Fuel Cost Basis: \$8.00/MMBtu (LHV)

	FLAMELESS MAXIMUM EFFICIENCY	FLAMELESS BASELINE	CONVENTIONAL NATURAL DRAFT
Base Heater Cost, \$	3,000,000- 4,000,000	3,000,000- 4,000,000	3,000,000
Air Preheat Cost, \$	837,900	700,000	0.00
Yrs to Pay for Preheat System	0.87	0.88	NA
Flame/Gas Impingement on Tubes	No	No	Yes
Increased Run Length	Yes	Yes	No
Increased Tube Life	Yes	Yes	No
Even Heat Transfer to Radiant Coil	Yes	Yes	No
Burner-Burner Flame Interaction	No	No	Yes
Multi-Burner Effect NOx Increase	No	No	Yes

Speed of Implementation Issues

Market Acceptance of Conventional vs. Flameless Heaters

Now You Can Have **BOTH**

Zero Risk: Conventional Heater that Can Be Operated in Flameless Mode for Extreme NO_x and CO₂ Reduction

Conclusion

It's Time To

"Kick the Tires"

on

Flameless Combustion
Technology

Path Forward

- Combined Technologies
 - **ü** Pre-Combustion Fuel Conditioning
 - **ü** High Efficiency Combustion Processes
 - **ü** Oxy-Fuel
 - **ü** HTAC
 - **ü** Flameless
 - **ü** Post-Combustion CO₂ Capture and Storage
- Requires Joint Efforts
 - **ü** Industry
 - **ü** Academia
 - **ü** Government Entities

Please contact us to join efforts or for additional information:

Info@GreatSouthernGroup.com

Questions and Answers

GROUP

Great Southern Technologies, LLC

Great Southern Flameless, LLC

Great Southern Independent, LLC

www.GreatSouthernGroup.com

Significantly different companies.